Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 190: 106642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599551

RESUMO

The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.


Assuntos
Aderência Bacteriana , Células Epiteliais , Infecções por Klebsiella , Klebsiella oxytoca , Pulmão , Bexiga Urinária , Klebsiella oxytoca/fisiologia , Humanos , Células Epiteliais/microbiologia , Pulmão/microbiologia , Infecções por Klebsiella/microbiologia , Bexiga Urinária/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Técnicas de Cocultura , Coinfecção/microbiologia , Linhagem Celular , Interações Microbianas , Infecções Oportunistas/microbiologia , Infecções Respiratórias/microbiologia , Virulência
2.
Data Brief ; 24: 103853, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31011596

RESUMO

Klebsiella oxytoca is a facultative aerobic, gram-negative, rod-shaped bacterium capable of causing nosocomial infections, in particular catheter-associated urinary tract infections (CAUTIs). Data on the possible roles of uncommon pathogens such as K. oxytoca in the pathogenesis of biofilm-associated infections such as CAUTIs have been already reported. Herein, we describe the draft genome sequence of K. oxytoca strain NK-1 isolated from the surface of ureteral stent retrieved from a Russian female. The genome comprises 6,232,464 bp, with a G + C content of 55.60% and an L 50 of 7. A total of 6246 putative protein-encoding genes were predicted, including considerable number of genes responsible for adhesion, invasion, drug resistance, iron acquisition and other genes relevant for virulence. The NK-1 strain was ascribed a sequence type (ST) as ST 216 (4, 6, 19, 10, 46, 24, 31). Data comparison of the recA gene sequences confirmed that the strain belongs to the species K. oxytoca. Minimal inhibitory concentration of different antibiotics have been determined. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number QPKC00000000.1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA